Time-resolved Quantitative Inter-eye Comparison of Cardiac Cycle-induced Blood Volume Changes in the Human Retina

We describe a low-cost, easy to use binocular instrument to acquire retinal video sequences of both eyes simultaneously. After image registration, cardiac cycle-induced pulsatile light attenuation changes can be measured quantitatively with high spatial and temporal resolution. Parameters such as amplitude, pulse form, and time shift between light attenuation changes can be calculated and compared between eye sides. Deviation from inter-eye symmetry can be not only an early sign of beginning eye diseases such as glaucoma but also a sign of pathological changes in the carotid arteries; hence, this method can improve the early detection of pathological changes. Important features compared to existing monocular instruments are a narrow band light source with the wavelength close to the peak of the blood extinction, and a proportional relationship of image intensity and light intensity, which are the main requirements for quantitative evaluation.

Read full text

Opthalmic Imaging

Radim KolářRadim Kolář

Jan OdstrčilíkJan Odstrčilík

Ralf-Peter Tornow

Follow Us

Get the latest news about our teaching and learning activities or get excited about scientific discoveries in biomedical engineering.

Partner With Us

We are committed to promote collaboration across biomedical disciplines creating mutual benefits with companies and research organizations. Explore opportunities to engage with our research teams, or find out more about our current research partners.

Giving

Donate to support research and education that translates into improved healthcare and people’s wellbeing. With a number of giving options, you can support the area you care about most. Gifts of any size help expand our positive impact throughout the society.